Redis限流是一种实用的技术手段,通过Redis的特性实现访问频率控制,保障系统稳定运行,防止恶意攻击或过高负载。实际应用中,可有效管理API请求次数,优化系统性能。
Redis限流在分布式系统中的应用与实践
在分布式系统中,为了防止系统过载,保证系统的稳定性和可用性,我们经常需要对接口进行限流,限流是一种保护系统的措施,通过对请求进行控制,使系统在可接受的负载范围内正常运行,Redis作为一种高性能的键值数据库,具有出色的并发处理能力和丰富的数据结构,被广泛应用于限流场景,本文将介绍Redis限流在分布式系统中的应用与实践。
限流算法
1、固定窗口计数器
固定窗口计数器是最简单的限流算法,它将时间划分为固定大小的窗口,在每个窗口内维护一个计数器,每当请求到达时,计数器加1,如果计数器达到预设的阈值,则拒绝后续请求,当窗口结束时,计数器重置为0。
固定窗口计数器存在一个缺点:在窗口切换瞬间,可能会产生大量的请求,导致系统压力增大,为了解决这个问题,可以采用滑动窗口计数器。
2、滑动窗口计数器
滑动窗口计数器将时间划分为多个小窗口,并维护一个滑动窗口,当请求到达时,将当前时间划分到相应的小窗口,并在滑动窗口内累加计数,与固定窗口计数器相比,滑动窗口计数器可以更好地平滑请求,但实现复杂度较高。
3、漏桶算法
漏桶算法将请求比作水滴,系统比作一个带有漏洞的桶,当请求到达时,水滴进入桶中,如果桶已满,则水滴溢出,桶底有一个漏洞,以固定速率漏水,漏桶算法通过控制桶的容量和漏水速率,实现对请求的限流。
4、令牌桶算法
令牌桶算法将请求比作令牌,系统维护一个令牌桶,令牌以固定速率添加到桶中,请求到达时,需要从桶中获取令牌,如果桶中没有足够的令牌,则拒绝请求,令牌桶算法允许突发请求,但超过令牌桶容量时,请求仍然会被拒绝。
Redis限流实现
1、使用Redis的原子操作实现固定窗口计数器
Redis提供了原子操作,如INCRBY和EXPIRE,可以轻松实现固定窗口计数器,以下是一个简单的示例:
// 每分钟限制100次请求 $redisKey = 'rate_limit_'.date('YmdHi'); $limit = 100; $expire = 60; // 1分钟 // 获取当前计数器值 $current = $redis->get($redisKey); if ($current >= $limit) { // 拒绝请求 return false; } // 计数器加1 $redis->INCRBY($redisKey, 1); // 设置过期时间 $redis->EXPIRE($redisKey, $expire); // 允许请求通过 return true;
2、使用Redis的ZSET实现滑动窗口计数器
Redis的ZSET(有序集合)可以用来实现滑动窗口计数器,以下是一个示例:
// 每分钟限制100次请求,滑动窗口大小为10秒 $redisKey = 'rate_limit_'.date('YmdHi'); $limit = 100; $windowSize = 10; // 10秒 // 获取当前时间戳 $currentTimestamp = time(); // 计算窗口开始时间戳 $windowStartTimestamp = $currentTimestamp - $windowSize; // 删除窗口之前的记录 $redis->ZRemRangeByScore($redisKey, '-inf', $windowStartTimestamp); // 获取当前窗口的请求次数 $current = $redis->ZCard($redisKey); if ($current >= $limit) { // 拒绝请求 return false; } // 添加当前请求记录 $redis->ZAdd($redisKey, $currentTimestamp, $currentTimestamp); // 允许请求通过 return true;
3、使用Redis实现令牌桶算法
Redis可以结合Lua脚本实现令牌桶算法,以下是一个示例:
// 令牌桶配置 $redisKey = 'token_bucket'; $capacity = 100; // 桶容量 $rate = 10; // 每秒生成令牌数 $precision = 1000; // 精度(毫秒) // Lua脚本 $luaScript = <<<'EOT' local key = KEYS[1] local capacity = tonumber(ARGV[1]) local rate = tonumber(ARGV[2]) local precision = tonumber(ARGV[3]) local current = tonumber(redis.call('get', key) or capacity) local tokens = min(capacity, current + (rate * precision) / 1000) if tokens >= 1 then redis.call('set', key, tokens - 1) return 1 else return 0 end EOT; // 获取令牌 $tokens = $redis->eval($luaScript, 1, $redisKey, $capacity, $rate, $precision); if ($tokens) { // 允许请求通过 return true; } else { // 拒绝请求 return false; }
Redis限流在分布式系统中具有广泛的应用,可以有效地保护系统,防止过载,本文介绍了限流算法、Redis限流实现方法以及一个简单的令牌桶算法示例,实际应用中,可以根据业务需求选择合适的限流算法和实现方式,确保系统的稳定性和可用性。
最新评论
本站CDN与莫名CDN同款、亚太CDN、速度还不错,值得推荐。
感谢推荐我们公司产品、有什么活动会第一时间公布!
我在用这类站群服务器、还可以. 用很多年了。