云主机测评网云主机测评网云主机测评网

云主机测评网
www.yunzhuji.net

使用python实现正态分布检验

正态分布检验是一种统计方法,用于检验样本数据是否符合正态分布,在Python中,我们可以使用SciPy库中的normaltest函数来实现正态分布检验,以下是详细的步骤和代码:

(图片来源网络,侵删)

1、导入所需库

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

2、生成或获取样本数据

示例数据
data = np.random.normal(0, 1, 100)

3、进行正态分布检验

k2, p = stats.normaltest(data)
alpha = 0.05
if p < alpha:
    print("拒绝原假设,数据不符合正态分布")
else:
    print("接受原假设,数据符合正态分布")

4、绘制直方图和QQ图,以验证数据是否符合正态分布

plt.hist(data, bins=30, density=True, alpha=0.6, color='g')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, np.mean(data), np.std(data))
plt.plot(x, p, 'k', linewidth=2)
title = "Fit results: mu = %.2f,  std = %.2f" % (np.mean(data), np.std(data))
plt.title(title)
stats.probplot(data, dist="norm", plot=plt)
plt.show()

通过以上代码,我们可以实现正态分布检验,首先生成或获取样本数据,然后使用normaltest函数进行检验,我们绘制直方图和QQ图,以验证数据是否符合正态分布。

打赏
版权声明:主机测评不销售、不代购、不提供任何支持,仅分享信息/测评(有时效性),自行辨别,请遵纪守法文明上网。
文章名称:《使用python实现正态分布检验》
文章链接:https://www.yunzhuji.net/jishujiaocheng/53393.html

评论

  • 验证码