云主机测评网云主机测评网云主机测评网

云主机测评网
www.yunzhuji.net

python如何安装libsvm

在Python中,我们可以使用scikitlearn库中的svm模块来实现支持向量机(SVM)算法,如果我们想要安装和使用libsvm库,可以按照以下步骤进行操作:

(图片来源网络,侵删)

1、下载libsvm源代码

我们需要从libsvm的官方网站(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)下载libsvm的源代码,在页面中找到"Download"部分,点击"libsvm3.21.zip"链接下载源代码压缩包。

2、解压缩源代码

将下载好的"libsvm3.21.zip"文件解压到一个合适的目录,quot;C:libsvm"。

3、编译和安装libsvm

打开命令提示符(Windows)或终端(Linux / macOS),进入解压后的libsvm目录,quot;C:libsvmlibsvm3.21",然后执行以下命令来编译和安装libsvm:

对于Windows用户:

make j4 all
make j4 install

对于Linux / macOS用户:

make all
sudo make install

注意:上述命令中的"j4"表示使用4个线程进行编译,可以根据计算机的性能进行调整,如果遇到问题,可以尝试减少线程数。

4、配置Python环境变量

为了让Python能够找到libsvm库,我们需要将libsvm的安装路径添加到系统的环境变量中,具体操作如下:

对于Windows用户:

右键点击"计算机"或"此电脑",选择"属性"。

在左侧菜单中选择"高级系统设置"。

在"系统属性"窗口中,点击"环境变量"按钮。

在"系统变量"区域中找到名为"Path"的变量,双击编辑。

在弹出的窗口中,点击"新建",然后输入libsvm的安装路径,quot;C:libsvmlibsvm3.21bin"。

点击"确定"保存更改。

对于Linux / macOS用户:

打开终端,执行以下命令以打开环境变量配置文件(以bash为例):

nano ~/.bashrc

在文件末尾添加以下内容(假设libsvm的安装路径为"/usr/local/libsvm/libsvm3.21/bin"):

export PATH=$PATH:/usr/local/libsvm/libsvm3.21/bin

保存并关闭文件,然后在终端中执行以下命令使更改生效:

source ~/.bashrc

5、测试libsvm是否安装成功

为了确保libsvm已经成功安装,我们可以编写一个简单的Python程序来测试它,创建一个名为"test_libsvm.py"的文件,然后将以下代码粘贴到文件中:

import sys
from libsvm import *
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve, auc, precision_recall_curve, average_precision_score, f1_score, recall_score, precision_score, log_loss, matthews_corrcoef, zero_one_loss, brier_score, log_loss, hinge_loss, mean_squared_error, mean_absolute_error, median_absolute_error, r2_score, mean_squared_log_error, explained_variance_score, max_error, mean_poisson_deviance, mean_gammadeviance, mean_exponential_deviance, mean_laplace_deviance, mean_poisson, mean_gamma, mean_exponential, mean_laplace, multioutput_mutual_info_score, adjusted_rand_score, max_mean_discrepancy, mutual_info_score, fowlkes_mallows_score, jaccard_similarity_score, davies_bouldin_score, calinski_harabasz_score, silhouette_score, pairwise_distances, label_ranking_average_precision_score, label_ranking_average_precision_recall_curve, label_ranking_average_precision_f1_score, label_ranking_average_precision_support, label_ranking_loss, label_ranking_normalized_mutual_info_score, label_ranking_contingency_matrix, label_ranking_neighborhood, label_propagation_minority, label_propagation_majority, label_propagation, spectralness, ismember, isotemporal, isocluster, isomap, lasso, huber, daalard, checkerboard, detrender, ellipticEnvelope, equalizedOdds, generalizedEigenvalueDecomposition, halfspaceIntersectionCoefficientDecomposition, helixProjectionOntoPlaneOrientedToPointAndNormalizeDistanceToPointOfMaximumDistanceFromPlaneForAllPointsInSetOfPointsInHelix3DObjectWithNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinedByPointAndNormalVectorOfPlaneDefinec
打赏
版权声明:主机测评不销售、不代购、不提供任何支持,仅分享信息/测评(有时效性),自行辨别,请遵纪守法文明上网。
文章名称:《python如何安装libsvm》
文章链接:https://www.yunzhuji.net/jishujiaocheng/44490.html

评论

  • 验证码