云主机测评网云主机测评网云主机测评网

云主机测评网
www.yunzhuji.net

在python中如何删除数据框中的数据

在Python中,我们可以使用pandas库来处理数据框(DataFrame),删除数据框中的数据可以通过以下几种方式:

(图片来源网络,侵删)

1、删除行:可以使用drop()函数,通过指定行索引或条件来删除行。

2、删除列:可以使用drop()函数,通过指定列名或条件来删除列。

3、重置索引:可以使用reset_index()函数来重置数据框的索引。

以下是具体的操作步骤和代码示例:

1. 删除行

方法一:通过行索引删除

import pandas as pd
创建一个数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
print("原始数据框:")
print(df)
删除索引为1的行
df = df.drop(1)
print("n删除索引为1的行后的数据框:")
print(df)

方法二:通过条件删除

import pandas as pd
创建一个数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
print("原始数据框:")
print(df)
删除'A'列值大于1的行
df = df[df['A'] <= 1]
print("n删除'A'列值大于1的行后的数据框:")
print(df)

2. 删除列

方法一:通过列名删除

import pandas as pd
创建一个数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
print("原始数据框:")
print(df)
删除列'B'
df = df.drop('B', axis=1)
print("n删除列'B'后的数据框:")
print(df)

方法二:通过条件删除

import pandas as pd
创建一个数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
print("原始数据框:")
print(df)
删除'A'列值为偶数的行
df = df[df['A'] % 2 != 0]
print("n删除'A'列值为偶数的行后的数据框:")
print(df)

3. 重置索引

import pandas as pd
创建一个数据框
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
print("原始数据框:")
print(df)
重置索引
df = df.reset_index(drop=True)
print("n重置索引后的数据框:")
print(df)
打赏
版权声明:主机测评不销售、不代购、不提供任何支持,仅分享信息/测评(有时效性),自行辨别,请遵纪守法文明上网。
文章名称:《在python中如何删除数据框中的数据》
文章链接:https://www.yunzhuji.net/jishujiaocheng/44210.html

评论

  • 验证码