Caffe是一个深度学习框架,它由伯克利的BVLC(Berkeley Vision and Learning Center)实验室开发,Caffe使用C++编写,支持多种编程语言,如Python、MATLAB等,在Python中使用Caffe,需要通过Python接口进行操作,本文将详细介绍如何在Python中使用Caffe。
(图片来源网络,侵删)1、安装依赖库
在使用Caffe之前,需要安装一些依赖库,在Ubuntu系统中,可以通过以下命令安装:
sudo aptget install libprotobufdev libleveldbdev libsnappydev libopencvdev libhdf5serialdev protobufcompiler sudo aptget install noinstallrecommends libboostalldev sudo aptget install libopenblasdev liblapackdev libatlasbasedev gfortran
对于Windows系统,可以从Caffe的GitHub仓库(https://github.com/BVLC/caffe/releases)下载预编译的二进制文件。
2、克隆Caffe仓库
从Caffe的GitHub仓库克隆源代码:
git clone https://github.com/BVLC/caffe.git cd caffe
3、编译Caffe
在Ubuntu系统中,可以使用以下命令编译Caffe:
cp Makefile.config.example Makefile.config make all make test make runtest
对于Windows系统,可以运行build_win.bat
脚本来编译Caffe。
4、安装Python接口
安装Python开发环境:
sudo aptget install pythondev pythonpip numpy scipy cython pillow h5py matplotlib
从GitHub仓库克隆Python接口源代码:
git clone https://github.com/BVLC/caffe/tree/master/python cd python
接下来,使用pip安装依赖库:
pip install r requirements.txt
5、编写Python代码
创建一个名为example.py
的文件,编写以下代码:
import caffe as cf import numpy as np from PIL import Image import os, sys, time, copy, shutil, random, math, bisect, heapq, string, collections, itertools, queue, threading, re, datetime, functools, urllib, binascii, getopt, grep, hashlib, subprocess, multiprocessing, json, base64, zipfile, glob, tarfile, gzip, bz2, lzma, bottleneck, socket, select, errno, fcntl, termios, struct, timeit, pdb, signal, traceback, argparse, readline, atexit, codecs, stat, io, ossaudiodev, contextlib, tempfile, warnings, weakref, operator as op, keyword as kwd from scipy import misc from scipy import ndimage as ndi # for smooth filters only the first dimension is supported in C++ currently (e.g. convolution) so we use this to apply the same operation on the second dimension of the input image if necessary (e.g. when using "spatial" data format). For more info see: http://www.scipy.org/Cookbook/SignalSmoothing#head7d980a1b6f30479cb1d980a1b6f30479cb1d980a1b6f30479cb1d980a1b6f30479c or http://stackoverflow.com/questions/18752322/howtoapplyafilterwithscipyndimageconvolveintwodimensionsienotjustt#answer23765355 for alternative methods to apply filters in two dimensions with C++ filters. This workaround is not needed anymore since Caffe now supports multiple dimensions in its filters (commit: https://github.com/BVLC/caffe/commit/f285f4e7e87d3ec2b4e9b9e5a682d564d786a5a0). The code above can be removed once you have updated your Caffe installation to include the commit mentioned above. # noqa: F401 # pylint: disable=W0611 # pylint: disable=W0223 # pylint: disable=W0201 # pylint: disable=W0613 # pylint: disable=R0201 # pylint: disable=R0205 # pylint: disable=R0801 # pylint: disable=R0803 # pylint: disable=R0914 # pylint: disable=R0915 # pylint: disable=R0916 # pylint: disable=R0917 # pylint: disable=R0912 # pylint: disable=R0913 # pylint: disable=R0711 # pylint: disable=R0232 # pylint: disable=R0823 # pylint: disable=R0805 # pylint: disable=R0710 # pylint: disable=R0612 # pylint: disable=R0911 # noqa: F401 # pylint: disable=W0611 # pylint: disable=W0223 # pylint: disable=W0201 # pylint: disable=W0613 # pylint: disable=R0201 # pylint: disable=R0205 # pylint: disable=R0801 # pylint: disable=R0803 # pylint: disable=R0914 # pylint: disable=R0915 # pylint: disable=R0916 # pylint: disable=R0917 # pylint: disable=R0912 # pylint: disable=R0913 # pylint: disable=R0711 # pylint: disable=R0232 # pylint: disable=R0823 # pylint: disable=R0805 # pylint: disable=R0710 # pylint: disable=R0612 # noqa: F401 # pylint: enable=F0401 # noqa: F401 # pylint: enable=F0401 from __future__ import print_function from __future__ import division from __future__ import absolute_import from future import standard_library from future import division from future import print_function from future import absolute_import from future import standard_library from builtins import range from past.utils import old_div from past.utils import old_round from past.utils import iteritems from past.utils import lru_cache from past.utils import basestring from past.utils import filterfalse from past.utils import cmp_to_key from past.utils import unicode as str Import any other modules you need here... ...then define your class and main function below this line... If you want to use Caffe's Python API in another module (e.g. in a script), then don't forget to add the following lines at the beginning of that file (replace "mymodule" with the name of your module): try: sys.path.remove('/path/to/caffe') except ValueError: pass sys.path.insert(0, '/path/to/caffe') import caffe as cf def main(): pass if __name__ == '__main__': main() End of file; do not edit directly! *coding: utf8 *``` 在代码中,我们首先导入了所需的库,然后定义了一个名为main
的函数,在if __name__ == '__main__':
语句下,调用main
函数,在main
函数中,我们可以编写使用Caffe的代码,加载预训练模型、处理图像数据等。 6、运行Python代码 在终端中,运行以下命令:
python example.py [args] [optional arguments] [positional arguments] [command options] [other options] …
[args] [optional arguments] [positional arguments] [command options] [other options] ...
表示传递给Python脚本的参数,具体参数可以参考Caffe的官方文档。
最新评论
本站CDN与莫名CDN同款、亚太CDN、速度还不错,值得推荐。
感谢推荐我们公司产品、有什么活动会第一时间公布!
我在用这类站群服务器、还可以. 用很多年了。