支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,主要用于分类和回归任务,在Python中,我们可以使用scikitlearn库来实现SVM,本文将详细介绍如何在Python中使用SVM进行分类和回归任务。
(图片来源网络,侵删)我们需要安装scikitlearn库,可以通过以下命令进行安装:
pip install scikitlearn
接下来,我们将分别介绍如何使用SVM进行分类和回归任务。
SVM分类
1、导入所需库:
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score
2、加载数据集:
iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target
3、划分训练集和测试集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
4、数据预处理:
sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test)
5、创建SVM模型:
svm = SVC(kernel='linear', C=1.0, random_state=1)
6、训练模型:
svm.fit(X_train_std, y_train)
7、预测:
y_pred = svm.predict(X_test_std)
8、评估模型:
accuracy = accuracy_score(y_test, y_pred) print('Accuracy: %.2f' % accuracy)
SVM回归
1、导入所需库:
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.metrics import mean_squared_error, r2_score
2、加载数据集:
boston = datasets.load_boston() X = boston.data[:, [2, 3]] y = boston.target
3、划分训练集和测试集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
4、数据预处理:
sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test)
5、创建SVM回归模型:
svm = SVR(kernel='rbf', C=1000000.0, gamma=0.1) # 参数调整可根据实际数据集进行调整,如C、gamma等参数的调整会影响模型性能和泛化能力,具体可参考sklearn官方文档或相关教程。 # 注意:对于非线性回归问题,通常需要选择适当的核函数(如线性核、多项式核、高斯核等),这里我们使用RBF核(径向基函数核)。 # 对于不同的数据集和问题,可能需要调整其他参数(如惩罚系数C、核函数参数gamma等)以获得最佳性能。 # 更多关于SVM回归模型的详细信息,可以参考sklearn官方文档或其他相关资料。 # http://scikitlearn.org/stable/modules/generated/sklearn.svm.SVR.html # https://www.cnblogs.com/pinard/p/6797194.html # https://zhuanlan.zhihu.com/p/49855748 # https://blog.csdn.net/qq_42268547/article/details/82866879 # https://blog.csdn.net/weixin_39635577/article/details/89865799 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/article/details/82666287 # https://blog.csdn.net/weixin_43966849/article/details/104543713 # https://blog.csdn.net/qq_41935759/articles/category/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert # https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p/20027022?refer=bigdataexpert #https://zhuanlan.zhihu.com/p//115818115 #https://zhuanlan.zhihu.com/p//115818115 #https://zhuanlan
最新评论
本站CDN与莫名CDN同款、亚太CDN、速度还不错,值得推荐。
感谢推荐我们公司产品、有什么活动会第一时间公布!
我在用这类站群服务器、还可以. 用很多年了。