云主机测评网云主机测评网云主机测评网

云主机测评网
www.yunzhuji.net

python 分段函数拟合

分段函数拟合是一种在数据建模中常用的技术,它通过将一个复杂的函数分解为若干个简单的函数来近似地描述数据,在Python中,我们可以使用SciPy库中的curve_fit函数进行分段函数拟合,下面将详细介绍如何使用Python进行分段函数拟合。

(图片来源网络,侵删)

我们需要安装SciPy库,在命令行中输入以下命令进行安装:

pip install scipy

接下来,我们定义一个分段函数,假设我们要拟合的分段函数如下:

def piecewise_linear(x, x0, y0, k1, k2):
    return np.piecewise(x, [x < x0], [lambda x:k1*x + y0k1*x0, lambda x:k2*x + y0k2*x0])

x0y0是分段点的横纵坐标,k1k2分别是分段点前后的斜率。

我们需要生成一些模拟数据,这里我们使用numpy库生成一组随机数据:

import numpy as np
np.random.seed(0)
x_data = np.linspace(0, 4, 50)
y = piecewise_linear(x_data, 2, 3, 1.5, 1.5) + np.random.normal(0, 0.2, len(x_data))

接下来,我们需要编写一个拟合函数,用于计算分段函数与实际数据的残差平方和:

def residuals(params, x, y):
    a, b, c, d = params
    y_pred = piecewise_linear(x, a, b, c, d)
    return y y_pred

现在,我们可以使用SciPy库中的curve_fit函数进行分段函数拟合:

from scipy.optimize import curve_fit
p0 = [2, 3, 1.5, 1.5]  # 初始参数猜测
popt, pcov = curve_fit(residuals, x_data, y, p0=p0)

curve_fit函数会返回两个值:popt是拟合得到的最优参数,pcov是协方差矩阵,我们可以使用popt计算拟合后的分段函数:

y_fit = piecewise_linear(x_data, *popt)

我们可以将原始数据和拟合结果可视化:

import matplotlib.pyplot as plt
plt.plot(x_data, y, 'b', label='data')
plt.plot(x_data, y_fit, 'r', label='fit: a=%5.3f, b=%5.3f, c=%5.3f, d=%5.3f' % tuple(popt))
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

以上就是使用Python进行分段函数拟合的详细教程,通过这个过程,你可以学会如何定义分段函数、生成模拟数据、编写拟合函数以及使用SciPy库进行拟合,希望对你有所帮助!

打赏
版权声明:主机测评不销售、不代购、不提供任何支持,仅分享信息/测评(有时效性),自行辨别,请遵纪守法文明上网。
文章名称:《python 分段函数拟合》
文章链接:https://www.yunzhuji.net/jishujiaocheng/20510.html

评论

  • 验证码