云主机测评网云主机测评网云主机测评网

云主机测评网
www.yunzhuji.net

pythonsample函数菜鸟

在Python中,我们可以使用sample()函数来从列表、元组或字符串中获取指定数量的随机元素,这个函数非常有用,特别是在我们需要从大量数据中抽取一小部分样本进行数据分析时,下面是关于sample()函数的详细教学。

(图片来源网络,侵删)

1、sample()函数的基本用法

sample()函数的基本语法如下:

random.sample(sequence, k)

sequence是要从中抽取样本的序列(如列表、元组或字符串),k是要抽取的样本数量。

示例:

import random
my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
sampled_list = random.sample(my_list, 3)
print(sampled_list)

输出结果可能是:

[5, 2, 9]

注意,sample()函数返回的是一个新的列表,包含从原序列中随机抽取的元素,原序列不会被修改。

2、使用sample()函数进行有放回抽样

我们需要进行有放回抽样,即每次抽取的样本在下一次抽取时仍然有可能被选中,这时,我们可以结合random.choice()函数和列表推导式来实现。

示例:

import random
my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
sampled_list = [random.choice(my_list) for _ in range(3)]
print(sampled_list)

输出结果可能是:

[5, 2, 9]

3、使用sample()函数进行无放回抽样

默认情况下,sample()函数就是进行无放回抽样,但为了演示,我们可以使用以下代码实现无放回抽样:

import random
def sample_without_replacement(sequence, k):
    if k > len(sequence):
        raise ValueError("Sample size is greater than population size.")
    return random.sample(sequence, k)
my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
sampled_list = sample_without_replacement(my_list, 3)
print(sampled_list)

输出结果可能是:

[5, 2, 9]

4、使用sample()函数对大型数据集进行抽样

当处理大型数据集时,我们可以使用sample()函数快速地从中抽取一部分样本进行分析,我们可以从一个包含10000个元素的列表中抽取1000个样本:

import random
large_list = list(range(10000))
sampled_list = random.sample(large_list, 1000)
print(sampled_list)

sample()函数是Python中一个非常实用的函数,可以帮助我们从各种序列中快速地抽取随机样本,通过掌握这个函数,我们可以更方便地进行数据分析和处理。

打赏
版权声明:主机测评不销售、不代购、不提供任何支持,仅分享信息/测评(有时效性),自行辨别,请遵纪守法文明上网。
文章名称:《pythonsample函数菜鸟》
文章链接:https://www.yunzhuji.net/jishujiaocheng/18696.html

评论

  • 验证码