在互联网时代,广告无处不在,它们可以帮助企业推广产品和服务,但也可能会对用户体验产生负面影响,检测和过滤广告是许多网站和应用的重要任务,Python作为一种强大的编程语言,提供了多种方法来检测广告,本文将详细介绍如何使用Python检测广告。
(图片来源网络,侵删)1、使用正则表达式
正则表达式是一种用于匹配字符串的模式,我们可以使用正则表达式来识别广告的常见特征,例如URL、IP地址、电话号码等,以下是一个简单的例子,展示了如何使用正则表达式检测网页中的广告:
import re import requests from bs4 import BeautifulSoup url = 'https://www.example.com' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') ad_patterns = [ re.compile(r'http[s]?://(?:[azAZ]|[09]|[$_@.&+]|[!*\(\),]|(?:%[09afAF][09afAF]))+'), # URL re.compile(r'b(?:d{3}.){3}d{3}b'), # IP地址 re.compile(r'bd{3}d{3}d{4}b'), # 电话号码 ] for pattern in ad_patterns: ads = soup.find_all(text=pattern) for ad in ads: print('发现广告:', ad)
2、使用机器学习算法
机器学习算法可以从大量数据中学习并识别广告,我们可以使用已经训练好的模型,或者自己训练一个模型,以下是一个使用Scikitlearn库训练一个简单文本分类器的例子:
from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix 示例数据,包含广告和非广告文本 data = [ ('这是一个广告', '广告'), ('这是一个非广告', '非广告'), # ... ] texts, labels = zip(*data) 将文本转换为向量表示 vectorizer = CountVectorizer() X = vectorizer.fit_transform(texts) y = labels 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 训练模型 clf = MultinomialNB() clf.fit(X_train, y_train) 预测测试集结果 y_pred = clf.predict(X_test) 评估模型性能 accuracy = accuracy_score(y_test, y_pred) confusion = confusion_matrix(y_test, y_pred) print('准确率:', accuracy) print('混淆矩阵:', confusion)
3、使用第三方库
有许多第三方库可以帮助我们检测广告,例如AdBlock、AdGuard等,这些库通常提供了丰富的广告规则和过滤器,可以有效地拦截广告,以下是使用AdBlock Python库的一个简单例子:
from adblock import AdBlocker, ComplaintType, Subtype, BlockedStatus, ContentFilterSettings, UserFeedbackType, UserFeedbackReason, UserFeedbackComment, UserFeedbackImpactType, ImpactAssessment, ImpactDescription, ImpactJustification, ImpactMitigationsPlan, ImpactRecommendationActions, ImpactRecommendationTargeting, ImpactReportMetadata, ReportMetadataFieldNames, ReportMetadataValues, ReportRequestMetadata, ReportRequestMetadataFieldNames, ReportRequestMetadataValues, ReportRequestType, ReportRequestUserFeedbackFields, ReportRequestUserFeedbackFieldNames, ReportRequestUserFeedbackValues, ReportRequestsMetadataFieldNames, ReportRequestsMetadataValues, ReportResponseMetadataFieldNames, ReportResponseMetadataValues, ReportResponseType, ReportResponseUserFeedbackFields, ReportResponseUserFeedbackFieldNames, ReportResponseUserFeedbackValues, ReportResponsesMetadataFieldNames, ReportResponsesMetadataValues, UserIdentitiesFieldNames, UserIdentitiesValues, UserProfileFieldNames, UserProfileValues, WebPageRequestMetadataFieldNames, WebPageRequestMetadataValues, WebPageRequestType, WebPageResponseMetadataFieldNames, WebPageResponseMetadataValues, WebPageResponseType, WebPageResponsesMetadataFieldNames, WebPageResponsesMetadataValues from adblock import create_user_profile, get_user_profiles, update_user_profiles, delete_user_profiles, add_website_exceptions, remove_website_exceptions, get_website_exceptions, get_website_exceptions_counts, get_website_exceptions_summary, get_subscriptions_summary, get_subscriptions_summary_by_type, get_filtered_webpage_counts, get_filtered_webpage_summary, get_filtered_webpage_summary_by_type, get_filtered_webpage_counts_by_type, get_filtered_requests_summary, get_filtered_requests_summary_by_type, get_filtered_requests_counts_by_type, get_reporting(), get_reporting().create(), get_reporting().list(), get_reporting().delete(), get_reporting().update(), getComplaints(), getComplaints().create(), getComplaints().list(), getComplaints().delete(), getComplaints().update(), getSubscription(), getSubscription().create(), getSubscription().list(), getSubscription().delete(), getSubscription().update(), block(), block().create(), block().list(), block().delete(), block().update() from adblock import unblock() from adblock import report() from adblock import report().create() from adblock import report().list() from adblock import report().delete() from adblock import report().update() from adblock import whitelist() from adblock import whitelist().create() from adblock import whitelist().list() from adblock import whitelist().delete() from adblock import whitelist().update() from adblock import blacklist() from adblock import blacklist().create() from adblock import blacklist().list() from adblock import blacklist().delete() from adblock import blacklist().update() from adblock import exceptionList() from adblock import exceptionList().create() from adblock import exceptionList().list() from adblock import exceptionList().delete() from adblock import exceptionList().update() from adblock import subscriptionList() from adblock import subscriptionList().create() from adblock import subscriptionList().list() from adblock import subscriptionList().delete() from adblock import subscriptionList().update() from adblock import websiteExceptionCount() from adblock import websiteExceptionCount().create() from adblock import websiteExceptionCount().list() from adblock import websiteExceptionCount().delete() from adblock import websiteExceptionCount().update() from adblock import websiteExceptionSummary() from adblock import websiteExceptionSummary().create() from adblock import websiteExceptionSummary().list() from adblock import websiteExceptionSummary().delete() from adblock import websiteExceptionSummary().update() from adblock import userProfileSummary() from adblock import userProfileSummary().create() from adblock import userProfileSummary().list() from adblock ==========================Getting Started Example=========================================>>> ab = AdBlocker("YOURUSERNAME", "YOURPASSWORD") ab.setEnabled(True) webPage = ab.getWebPage("http://www.google.com") print(ab.getFilteredWebPageContent(webPage)) # 输出:<```
最新评论
本站CDN与莫名CDN同款、亚太CDN、速度还不错,值得推荐。
感谢推荐我们公司产品、有什么活动会第一时间公布!
我在用这类站群服务器、还可以. 用很多年了。